可能性教案

时间:2023-12-27 18:55:18
【推荐】可能性教案三篇

【推荐】可能性教案三篇

作为一名教师,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。那么大家知道正规的教案是怎么写的吗?以下是小编为大家整理的可能性教案3篇,欢迎阅读与收藏。

可能性教案 篇1

一、教学内容

人教版《义务教育课程标准实验教科书数学》三年级上册P104页“可能性”。

二、教学准备

教具准备:一个装着黄球的盒子,一个贴着红、绿贴纸的骰子,若干投影片投影仪。

学具准备:六个装有红、黄、白三种颜色小球的盒子,六个骰子,若干红、绿贴纸,水彩笔若干。

全班分6个学习小组,每组6人。

三、教学目标与策略选择

1、目标确定:

“可能性”是新教材的内容,学生在生活中或多或少也接触过,但作为数学中的概率知识来学习还是第一次,对他们而言还是有一定难度的,根据教材内容和学生实际情况,我重组教材,制定了以下几个教学目标。

⑴知识目标、;通过具体的操作活动,学生能初步体验事件发生的确定性和不确定性。经历猜测和简单的试验初步了解可能性的大小。能用“一定”“可能”“不可能”等词语来描述生活中一些事情发生的可能性。

⑵技能目标:结合具体情境,能对某些事件进行推理,概括其结果。对一些简单事件的可能性进行描述,并和同伴交流想法。

⑶情感目标:在游戏中学习数学,感受数学学习带来的快乐,并获得一些初步的数学实践活动经验;在和伙伴交流的过程中获得良好的情感体验。

⑷教材的重点难点:有关概率知识对学生而言还是一个全新的概念,设计各种活动丰富学生的感性经验升华为理性认识尤为重要,所以我把体验、描述生活中的确定和不确定事件为教学重点。通过实验领悟可能性大小与其可能出现的不同结果所占总数数量多少的密切关系为本节课的难点。

2、教学策略选择:

根据学生的心里特征和教材实际,本节课选择了演示、观察、操作、启发、和情境性等教学策略,改变以往的学习方式,采用小组合作、探究学习,自主学习、重视体验等多种学习策略,力求培养学生的猜想意识,表达能力以及初步的判断和推理能力,激发学习数学的兴趣和养成良好的合作学习态度。整堂课把学习的主动权交给学生,放手让学生通过操作实践、自主探索、合作交流等有效学习方式,推出可能性的几种情况与“可能性”是有大小的。学生学的积极主动,老师教得轻松自然。整个教学过程教师的作用从传统的传递知识的权威变成学生学习的辅导者,成为学生学习的高效伙伴或合作者。学生在“猜球”、“摸球”、“涂色”、“小小裁判”、“选词填空”、“设计骰子”等充满情趣的情境中玩数学、学数学,亲身体验知识的形成过程,体会到运用知识解决实际问题的乐趣。

四、教学流程及设计意图

教学流程

设计意图

一、引入

小朋友们,我想知道你们喜欢做游戏吗?好,这节课我们大家就一起来做游戏。老师带来了几种不同颜色的球,悄悄装在盒子里。每小组的同学轮流来摸球,猜猜看你摸到的会是什么颜色的球?

二、展开

(一)认识“可能”、“一定”、“不可能”

1、初步感知(猜球)

学生们轮流摸球,前几个小朋友摸了以后,下面开始有“黄球”、“红球”、“白球”的叫声。

师:谁愿意说一说你们摸球的情况?

学生各抒己见

师:“大家说得很好那谁能把这些情况用一句话既清楚又简单地表达出来呢?”

引导学生说:在摸球的时候有可能摸到白球,有可能摸到黄球,也有可能摸到红球,摸到球的颜色不能肯定。

小结:象这样当答案不确定的时候,我们可以用“可能”这个词来表达。(板书)

师:如果继续摸的话,你会摸到什么颜色的球?用黑板上这个词来说一句话。

2、再次感知(摸球)

师:看大家玩得那么开心,我也想玩,老师这也有一个盒子,里面装的也是小球,看看能摸出什么颜色的球。

教师第一个摸出是黄球。接着走到学生中,学生参与摸球。

随着每个学生摸出的都是黄球,学生喊“黄球”的声音越来越大。

轮到最后一个学生摸球了,老师问:“你们能不能马上说出他摸的球的颜色?”

如果学生猜测是黄球,说说为什么?(学生猜测里面全是黄球)

师:一定吗?

【备选】当学生回答不一定时,打开盒子验证一下。

小结:当我们知道结果只有一种情况时,可以用“一定”这个词来表示。(板书一定)

如果在这个装着黄球的盒子里摸出一个白球,你认为可能吗?

根据学生回答板书(不可能)

(二)、初步了解可能性的大小

1、有什么办法在这个盒子里可能摸到白球呢?

2、放几个可以容易摸到?

根据学生回答师生共同进行验证。小组合作,把数量比例不同的黄球、白球放到盒子里进行实验,验证结论对错。

3、如果要求盒子里摸出的一定是白球该怎么办?

4、概括

通过刚才的摸球游戏,你们发现了什么?

让学生各抒己见

师:一般事情都有“一定可能不可能三种情况”,当然,可能性是有大有小的,有时候可能性也会发生变化。

5、揭题(板书课题――“可能性”)

(三)生活中的“可能性”

1、小小裁判(出示书P105插图)

生活中的很多事情都具有可能性,你看,这里有几件和生活紧密联系的事情,请你运用“一定”、“可能”、“不可能”对这几件事进行判断。同意说法的打√,不同意的打×。

⑴地球每天都在转动。

⑵我从出生到现在没吃过一点东西。

⑶三天后下雨。

⑷世界上每天都有孩子出生。

⑸太阳从西边升起。

⑹吃饭时,人用左手拿筷子。

(实物投影出示插图)学生进行判断。有争议的让学生说说为什么。

2、选词填空

同学们在语文课上我们都做过选词填空。今天数学课也要来做选词填空,看谁填得又对又快。

人()会老。明天的数学测试小明()得满分。

冬天()会下雪。在除法中,余数()比除数小。

鱼离开水()会死。在地球上,石狮子()在天上飞。

三、巩固

1、涂一涂

你看,这里有三个盒子。盒子里分别装着不同形状的物体,可是他们都忘了穿衣服,要同学们根据要求给他们涂上颜色,穿上衣服。

根据要求涂

⑴○一定是黄色的

⑵☆可能是蓝色的

⑶△不可能是红色的

2、造句

把今天学到的知识与实际生活联系起来,找个实例,选 ……此处隐藏2327个字……定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

(二) 师生互动,探索新知:

从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

接着类似的可以让学生自己结合生活经验独立举一些例子。

(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

(三) 讲解例题,综合运用:

在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

(四) 练习反馈,巩固新知:

做一做:

1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

(根据班级各小组的实际人数回答)

2、 转盘上涂有红、蓝、绿、黄四种颜色,

每种颜色的面积相同。自由转动一次转盘,

指针落在红色 区域的概率是多少?

指针落在红色或绿色 区域的概率是多少?

(1/4,1/2)

(五)变式练习,拓展应用:

例2:如图所示的是一个红、黄两色各占

一半的转盘,让转盘自由转动2次,指针2

次都落在红色 区域的概率是多少?一次落在

红色 区域,另一次落在黄色 区域的概率是多少?

分析:

(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

(3)统计所求各个事件所包含的可能结果数。

解:根据如图的树状图,所

有可能性相同的结果数有4种:

黄,黄;黄,红;红,黄;红,红。

其中2次指针都落在红色 区域的可能结

果只有1种,所以2次都落在红色 区域

的概率 ;

一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

(五) 反思总结,布置作业:

引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

五、教学说明:

本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

《【推荐】可能性教案三篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式